A direct comparison between volume and surface tracking methods with a boundary-fitted coordinate transformation and third-order upwinding

نویسندگان

  • Maria Zacharioudaki
  • Charalampos Kouris
  • Yannis Dimakopoulos
  • John Tsamopoulos
چکیده

A Volume Tracking (VT) and a Front Tracking (FT) algorithm are implemented and compared for locating the interface between two immiscible, incompressible, Newtonian fluids in a tube with a periodically varying, circular cross-section. Initially, the fluids are stationary and stratified in an axisymmetric arrangement so that one is around the axis of the tube (core fluid) and the other one surrounds it (annular fluid). A constant pressure gradient sets them in motion. With both VT and FT, a boundary-fitted coordinate transformation is applied and appropriate modifications are made to adopt either method in this geometry. The surface tension force is approximated using the continuous surface force method. All terms appearing in the continuity and momentum equations are approximated using centered finite differences in space and onesided forward finite differences in time. In each time step, the incompressibility condition is enforced by a transformed Poisson equation, which is linear in pressure. This equation is solved by either direct LU decomposition or a Multigrid iterative solver. When the two fluids have the same density, the former method is about 3.5 times faster, but when they do not, the Multigrid solver is as much as 10 times faster than the LU decomposition. When the interface does not break and the Reynolds number remains small, the accuracy and rates of convergence of VT and FT are comparable. The wellknown failure of centered finite differences arises as the Reynolds number increases and leads to non-physical oscillations in the interface and failure of both methods to converge with mesh refinement. These problems are resolved and computations with Reynolds as large as 500 converged by approximating the convective terms in the momentum equations by third-order upwind differences using Lagrangian Polynomials. When the volume of the core fluid or the Weber number decrease, increasing the importance of interfacial tension and leading to breakup of the interface forming a drop of core fluid, the FT method converges faster with mesh refinement than the VT method and upwinding may be required. Finally, examining the generation of spurious currents around a stationary ‘‘bubble’’ in the tube for Ohnesorge numbers between 0.1 and 10 it is found that the maximum velocity remains approximately the same in spite mesh refinements when VT is applied, whereas it is of the same order of magnitude for the coarsest mesh and monotonically decreases with mesh refinement when FT is applied. 2007 Elsevier Inc. All rights reserved. 0021-9991/$ see front matter 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jcp.2007.09.004 * Corresponding author. Tel.: +3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Development for Ducts of Arbitrary Cross Sections by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional momentum and energy equations in laminar flow to obtain temperature field and Nusselt numbers in the thermal entry region of straight ducts of different cross sectional geometries. The conservation equations originally written in Cartesian coordinates are parabolized in the...

متن کامل

Simulation of Styrene Polymerization in Arbitrary Cross-Sectional Duct Reactors by Boundary-Fitted Coordinate Transformation Method

The non-orthogonal boundary-fitted coordinate transformation method is applied to the solution of steady three-dimensional conservation equations of mass, momentum, energy and speciescontinuity to obtain the laminar velocity, temperature and concentration fields for simulation of polymerization of styrene in arbitrary cross-sectional duct reactors. Variable physical properties (except for speci...

متن کامل

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...

متن کامل

Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with coll...

متن کامل

Comparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis

In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2007